Scipy Read Gray Image to 3 Channel
Python scipy.io.wavfile.read() Examples
The post-obit are 30 lawmaking examples for showing how to employ scipy.io.wavfile.read() . These examples are extracted from open source projects. You can vote upwardly the ones you like or vote downward the ones you lot don't like, and go to the original project or source file by following the links higher up each instance.
You may check out the related API usage on the sidebar.
Y'all may also desire to check out all bachelor functions/classes of the module scipy.io.wavfile , or endeavour the search function .
Instance 1
def fbank(wav_path, apartment=True): """ Currently grabs log Mel filterbank, deltas and double deltas.""" (charge per unit, sig) = wav.read(wav_path) if len(sig) == 0: logger.warning("Empty wav: {}".format(wav_path)) fbank_feat = python_speech_features.logfbank(sig, rate, nfilt=xl) energy = extract_energy(rate, sig) feat = np.hstack([energy, fbank_feat]) delta_feat = python_speech_features.delta(feat, 2) delta_delta_feat = python_speech_features.delta(delta_feat, 2) all_feats = [feat, delta_feat, delta_delta_feat] if non flat: all_feats = np.array(all_feats) # Make fourth dimension the offset dimension for easy length normalization padding # after. all_feats = np.swapaxes(all_feats, 0, 1) all_feats = np.swapaxes(all_feats, 1, ii) else: all_feats = np.concatenate(all_feats, axis=1) # Log Mel Filterbank, with delta, and double delta feat_fn = wav_path[:-3] + "fbank.npy" np.salvage(feat_fn, all_feats)
Example ii
def wavfile_to_examples(wav_file): """Convenience wrapper around waveform_to_examples() for a common WAV format. Args: wav_file: Cord path to a file, or a file-like object. The file is assumed to comprise WAV audio information with signed 16-bit PCM samples. Returns: Come across waveform_to_examples. """ try: wav_file = BytesIO(wav_file) sr, wav_data = wavfile.read(wav_file) except IOError: print("Error reading WAV file!") print("The specified WAV file type is non supported past scipy.io.wavfile.read()") sys.exit(ane) if wav_data.dtype != np.int16: raise TypeError('Bad sample type: %r' % wav_data.dtype) samples = wav_data / 32768.0 # Convert to [-1.0, +i.0] return waveform_to_examples(samples, sr)
Example 3
def wavefile_to_waveform(wav_file, features_type): data, sr = sf.read(wav_file) if features_type == 'vggish': tmp_name = str(int(np.random.rand(1)*1000000)) + '.wav' sf.write(tmp_name, data, sr, subtype='PCM_16') sr, wav_data = wavfile.read(tmp_name) os.remove(tmp_name) # sr, wav_data = wavfile.read(wav_file) # as washed in VGGish Audioset affirm wav_data.dtype == np.int16, 'Bad sample type: %r' % wav_data.dtype data = wav_data / 32768.0 # Catechumen to [-1.0, +1.0] # at to the lowest degree one second of samples, if not repead-pad src_repeat = information while (src_repeat.shape[0] < sr): src_repeat = np.concatenate((src_repeat, data), axis=0) data = src_repeat[:sr] return data, sr
Example iv
def plotstft(audiopath, binsize=2**ten, plotpath=None, colormap="greyness", aqueduct=0, proper noun='tmp.png', alpha=1, kickoff=0): samplerate, samples = wav.read(audiopath) samples = samples[:, aqueduct] due south = stft(samples, binsize) sshow, freq = logscale_spec(s, cistron=1, sr=samplerate, alpha=blastoff) sshow = sshow[2:, :] ims = 20.*np.log10(np.abs(sshow)/10e-6) # amplitude to decibel timebins, freqbins = np.shape(ims) ims = np.transpose(ims) # ims = ims[0:256, offset:first+768] # 0-11khz, ~9s interval ims = ims[0:256, :] # 0-11khz, ~10s interval #impress "ims.shape", ims.shape prototype = Image.fromarray(ims) image = prototype.catechumen('L') prototype.save(name)
Instance 5
def read_file(filename): """ Read moving ridge file as mono. Args: - filename (str) : wave file / path. Returns: tuple of sampling rate and audio data. """ fs, sig = read(filename=filename) if (sig.ndim == 1): samples = sig else: samples = sig[:, 0] return fs, samples
Case half dozen
def triangle(t, randfunc=np.random.rand, t0_fac=None): # ramp up and then downwards acme = (0.4 * randfunc() + 0.4) * np.random.choice([-1,i]) width = randfunc()/4 * t[-i] # half-width really t0 = 2*width + 0.4 * randfunc()*t[-ane] if t0_fac is None else t0_fac*t[-1] x = acme * (1 - np.abs(t-t0)/width) x[np.where(t < (t0-width))] = 0 x[np.where(t > (t0+width))] = 0 amp_n = (0.1*randfunc()+0.02) # add together racket return x + amp_n*pinknoise(t.shape[0]) # Prelude to read_audio_file # Tried lots of ways of doing this.. nearly are dull. #betoken, rate = librosa.load(filename, sr=sr, mono=True, res_type='kaiser_fast') # Librosa'southward reader is incredibly wearisome. do not use #signal, rate = torchaudio.load(filename)#, normalization=True) # Torchaudio'southward reader is pretty fast but normalization is a trouble #signal = signal.numpy().flatten() #reader = io_methods.AudioIO # Stylios' file reader. Haven't gotten it working yet #betoken, rate = reader.audioRead(filename, mono=Truthful) #signal, charge per unit = sf.read('existing_file.wav')
Example seven
def __init__(self, path, sr=44100, ): super(FileEffect, cocky).__init__() print(" FileEffect: path = ",path) if (path is None) or (not glob.glob(path+"/Railroad train/target*")) \ or (not glob.glob(path+"/Val/target*")) or ((not glob.glob(path+"/effect_info.ini"))): print(f"Error: tin't file target output files or effect_info.ini in path = {path}") sys.exit(ane) # Yea, this is fatal self.sr = sr # read the effect info config file "effect_info.ini" config = configparser.ConfigParser() config.read(path+'/effect_info.ini') self.proper noun = config['event']['proper noun']+"(files)" # tack on "(files)" to the outcome name #TODO: note that employ of 'eval' below could be a potential security issue self.knob_names = eval(config.get("consequence","knob_names")) cocky.knob_ranges = np.array(eval(config.get("consequence","knob_ranges"))) try: self.is_inverse = (Truthful == bool(config['event']['changed']) ) self.proper name = "De-"+cocky.proper noun except: pass # Ignore errors we don't require that 'inverse' exist defined anywhere in the file
Case viii
def wavread(fn): """Emulate the parts of the matlab wavread function that we need. y, Fs = wavread(fn) y is the vector of sound samples, Fs is the frame rate. Matlab's wavread is used by voicesauce to read in the wav files for processing. As a consequence, all the translated algorithms presume the information from the wav file is in matlab form, which in this case means a double precision float between -1 and 1. The corresponding scipy function returns the bodily integer PCM values from the file, which range betwixt -32768 and 32767. (matlab's wavread *can* return the integers, simply does not past default and voicesauce uses the default). Consequently, after reading the data using scipy's io.wavfile, we catechumen to bladder by dividing each integer past 32768. """ # For reference, I figured this out from: # http://mirlab.org/jang/books/audiosignalprocessing/matlab4waveRead.asp?title=4-2%20Reading%20Wave%20Files # Thirty: if we need to handle 8 bit files we'll need to notice them and # special example them here. Fs, y = wavfile.read(fn) return y/numpy.float64(32768.0), Fs
Instance nine
def test_read_1(): for mmap in [False, True]: warn_ctx = WarningManager() warn_ctx.__enter__() try: warnings.simplefilter('ignore', wavfile.WavFileWarning) rate, data = wavfile.read(datafile('test-44100-le-1ch-4bytes.wav'), mmap=mmap) finally: warn_ctx.__exit__() assert_equal(rate, 44100) assert_(np.issubdtype(data.dtype, np.int32)) assert_equal(information.shape, (4410,)) del information
Example 10
def detect_MIDI_notes(cocky): """ The algorithm for computing midi notes from a given wav file. """ (framerate, sample) = wav.read(self.wav_file) # We need to alter the ii channels into ane considering STFT works merely # for 1 channel. Nosotros could also do STFT for each channel separately. monoChannel = sample.mean(centrality=1) duration = getDuration(self.wav_file) midi_notes = [] # Consider only files with a duration longer than 0.2 seconds. if duration > 0.xviii: frequency_power = self.calculateFFT(duration, framerate, monoChannel) filtered_frequencies = [f for (f, p) in frequency_power] #cocky.plot_power_spectrum(frequency_power) #self.plot_power_spectrum_dB(frequency_power) f0_candidates = self.get_pitch_candidates_remove_highest_peak(frequency_power) midi_notes = self.matchWithMIDINotes(f0_candidates) return midi_notes
Case 11
def get_data(): """The data files come from the TSP dataset 16k set""" _, human = wavfile.read('./wav_data/MA02_04.wav') charge per unit, woman = wavfile.read('./wav_data/FA01_03.wav') man = human.astype('float32') woman = woman.astype('float32') man_max = np.max(man) woman_max = np.max(woman) man /= man_max woman /= woman_max shortest = min(len(man), len(woman)) woman = woman[:shortest] man = human being[:shortest] np.random.seed(101) dissonance = np.random.uniform(-one, 1, len(man)) sources = np.stack((woman, man, noise)) A = np.random.uniform(-1, 1, (3, three)) linear_mix = np.dot(A, sources) pnl_mix = linear_mix.copy() pnl_mix[0] = np.tanh(pnl_mix[0]) pnl_mix[1] = (pnl_mix[ane] + pnl_mix[i]**3) / 2 pnl_mix[two] = np.exp(pnl_mix[2]) return linear_mix, pnl_mix, A, sources
Example 12
def mainParkinson(): general_feature_list = [] general_label_list = [] folder = raw_input('Give the proper noun of the folder that you lot desire to read data: ') if(folder == 'PD'): healthyCases = os.listdir('/habitation/gionanide/Theses_2017-2018_2519/Gkagkos/Audio_Files/PD') for x in healthyCases: wav = '/'+binder+'/'+str(10) mfcc_features,inputWav = mfcc_features_extraction(wav) mean_features(mfcc_features,inputWav,folder,general_feature_list,general_label_list) folder = raw_input('Give the name of the folder that yous want to read information: ') if(binder == 'HC'): parkinsonCases = os.listdir('/dwelling house/gionanide/Theses_2017-2018_2519/Gkagkos/Audio_Files/HC') for 10 in parkinsonCases: wav = '/'+folder+'/'+str(x) mfcc_features,inputWav = mfcc_features_extraction(wav) mean_features(mfcc_features,inputWav,folder,general_feature_list,general_label_list) #print general_feature_list, general_label_list #writeFeatures(general_feature_list,general_label_list,wav,folder) classifyPHC(general_feature_list,general_label_list)
Example thirteen
def load_wav(input_wav_file): # Load the inputs that we're given fs, audio = wav.read(input_wav_file) assert fs == 16000 print('source dB', db(audio)) return audio
Example fourteen
def load(path): bps, data = wav.read(path) if len(data.shape) != 1: data = data[:,0] + information[:,ane] return bps, information
Example 15
def load(path): bps, data = wav.read(path) if len(information.shape) != 1: information = data[:,0] + data[:,1] return bps, data
Case xvi
def load(path): bps, data = wav.read(path) if len(data.shape) != 1: data = data[:,0] + data[:,1] return bps, data
Example 17
def encode(self, south): """Transform a string with a filename into a list of float32. Args: s: path to the file with a waveform. Returns: samples: listing of int16s """ # Brand sure that the data is a single channel, 16bit, 16kHz wave. # TODO(chorowski): the directory may not be writable, this should fallback # to a temp path, and provide instructions for installing sox. if s.endswith(".mp3"): # TODO(dliebling) On Linux, cheque if libsox-fmt-mp3 is installed. out_filepath = southward[:-4] + ".wav" call([ "sox", "--guard", s, "-r", "16k", "-b", "16", "-c", "1", out_filepath ]) s = out_filepath elif not southward.endswith(".wav"): out_filepath = s + ".wav" if not os.path.exists(out_filepath): telephone call(["sox", "-r", "16k", "-b", "16", "-c", "1", s, out_filepath]) southward = out_filepath rate, information = wavfile.read(southward) assert rate == cocky._sample_rate affirm len(data.shape) == 1 if information.dtype non in [np.float32, np.float64]: data = data.astype(np.float32) / np.iinfo(information.dtype).max return data.tolist()
Example 18
def plotstft(audiopath, binsize=2**10, plotpath=None, colormap="gray", channel=0, name='tmp.png', blastoff=i, offset=0): samplerate, samples = wav.read(audiopath) samples = samples[:, channel] s = stft(samples, binsize) sshow, freq = logscale_spec(s, factor=one, sr=samplerate, alpha=blastoff) sshow = sshow[ii:, :] ims = 20.*np.log10(np.abs(sshow)/10e-6) # amplitude to decibel timebins, freqbins = np.shape(ims) ims = np.transpose(ims) ims = ims[0:256, outset:get-go+768] # 0-11khz, ~9s interval #print "ims.shape", ims.shape image = Image.fromarray(ims) image = image.convert('L') epitome.save(name)
Example xix
def load_vgmwav(wav_fp): fs, wav = wavread(wav_fp) assert fs == 44100 if wav.ndim == 2: wav = wav[:, 0] wav = wav.astype(np.float32) wav /= 32767. render wav
Example 20
def wavfile_to_examples(wav_file): """Convenience wrapper around waveform_to_examples() for a common WAV format. Args: wav_file: String path to a file, or a file-like object. The file is assumed to contain WAV audio data with signed 16-bit PCM samples. Returns: See waveform_to_examples. """ sr, wav_data = wavfile.read(wav_file) affirm wav_data.dtype == np.int16, 'Bad sample blazon: %r' % wav_data.dtype samples = wav_data / 32768.0 # Convert to [-ane.0, +1.0] return waveform_to_examples(samples, sr)
Example 21
def process_file(wav_file): sr, data = wavfile.read(wav_file) if data.dtype != np.int16: heighten TypeError('Bad sample type: %r' % data.dtype) # local import to reduce start-up fourth dimension from sound.processor import WavProcessor, format_predictions with WavProcessor() every bit proc: predictions = proc.get_predictions(sr, information) print(format_predictions(predictions))
Example 22
def rm_sil(voice_file, vad_obj): """ This code snippet is basically taken from the repository 'https://github.com/wiseman/py-webrtcvad' It removes the silence clips in a speech communication recording """ audio, sample_rate = read_wave(voice_file) frames = frame_generator(20, sound, sample_rate) frames = list(frames) segments = vad_collector(sample_rate, 20, l, vad_obj, frames) if os.path.exists('tmp/'): shutil.rmtree('tmp/') bone.makedirs('tmp/') wave_data = [] for i, segment in enumerate(segments): segment_file = 'tmp/' + str(i) + '.wav' write_wave(segment_file, segment, sample_rate) wave_data.suspend(wavfile.read(segment_file)[1]) shutil.rmtree('tmp/') if wave_data: vad_voice = np.concatenate(wave_data).astype('int16') return vad_voice
Case 23
def get_f0s_from_list(conf, list_file, wav_dir): """Get f0s from listfile Parameters --------- conf : SpeakerYML, Speaker dependent YAML class listfile : str, path-like, File path of the list file of the speaker wav_dir : str, path-similar, Directory path of the waveform Returns --------- f0s : list, shape(`num_files`), List of the f0s """ # open list file with open(list_file, 'r') as fp: files = fp.readlines() f0s = [] for f in files: # open wave file f = f.rstrip() wavf = os.path.join(wav_dir, f + '.wav') fs, ten = wavfile.read(wavf) 10 = np.array(x, dtype=np.float) x = low_cut_filter(ten, fs, cutoff=70) affirm fs == conf.wav_fs print("Extract F0: " + wavf) # constract FeatureExtractor clas feat = FeatureExtractor(analyzer=conf.analyzer, fs=conf.wav_fs, fftl=conf.wav_fftl, shiftms=conf.wav_shiftms, minf0=conf.f0_minf0, maxf0=conf.f0_maxf0) f0 = feat.analyze_f0(x) f0s.append(f0) return f0s
Example 24
def test_shifter(self): path = dirpath + '/data/test16000.wav' fs, x = wavfile.read(path) for f0rate in (0.5, 0.75, 1.0, 1.5, 2.0): if f0rate < 1: completion = True else: completion = Simulated shifter = Shifter(fs, f0rate=f0rate, shiftms=ten) transformed_x = shifter.f0transform(ten, completion=completion) affirm len(x) == len(transformed_x) if saveflag: fpath = path + str(f0rate) + '.wav' wavfile.write(fpath, fs, transformed_x.astype(np.int16))
Case 25
def test_wsola(self): path = dirpath + '/data/test16000.wav' fs, x = wavfile.read(path) for speech_rate in (0.5, 0.75, i.0, one.five, 2.0): wsola = WSOLA(fs, speech_rate) wsolaed_x = wsola.duration_modification(x) assert int(len(x) / speech_rate) == len(wsolaed_x) if saveflag: fpath = path + str(speech_rate) + '.wav' wavfile.write(fpath, fs, wsolaed_x.astype(np.int16))
Example 26
def test_mod_power(self): path = os.path.join(dirpath, 'information', 'test16000.wav') fs, x = wavfile.read(path) af = FeatureExtractor(analyzer='world', fs=fs, shiftms=5) f0, _, ap = af.clarify(x) mcep = af.mcep(dim=24, alpha=0.42) rmcep = mcep cvmcep = mcep * one.50 modified_cvmcep = mod_power(cvmcep, rmcep, alpha=0.42) assert modified_cvmcep.shape == cvmcep.shape
Instance 27
def test_anasyn_16000(self): path = dirpath + '/data/test16000.wav' fs, x = wavfile.read(path) af = FeatureExtractor(analyzer='globe', fs=fs, shiftms=5, fftl=1024) f0, spc, ap = af.analyze(x) mcep = af.mcep(dim=24, alpha=0.42) assert len(np.nonzero(f0)[0]) > 0 assert spc.shape == ap.shape # synthesize F0, mcep, ap synth = Synthesizer(fs=fs, fftl=1024, shiftms=5) wav = synth.synthesis(f0, mcep, ap, alpha=0.42) nun_check(wav)
Example 28
def test_anasyn_44100(cocky): path = dirpath + '/data/test44100.wav' fs, ten = wavfile.read(path) af = FeatureExtractor(analyzer='world', fs=fs, shiftms=5, minf0=100, fftl=2048) f0, spc, ap = af.clarify(ten) mcep = af.mcep(dim=twoscore, alpha=0.50) affirm len(np.nonzero(f0)[0]) > 0 assert spc.shape == ap.shape # mcep synthesis synth = Synthesizer(fs=fs, fftl=2048, shiftms=5) wav = synth.synthesis(f0, mcep, ap, blastoff=0.50) nun_check(wav)
Case 29
def test_spc_and_npow(self): path = dirpath + '/data/test16000.wav' fs, x = wavfile.read(path) af = FeatureExtractor(analyzer='world', fs=fs, shiftms=5) _, spc, _ = af.analyze(x) npow = af.npow() assert spc.shape[0] == npow.shape[0]
Example 30
def _loadWAVWithScipy(fileName): """ Load samples & sample rate from WAV file """ inputData = read(fileName) samples = inputData[1] sampleRate = inputData[0] return samples, sampleRate
mashburntheyinecaut.blogspot.com
Source: https://www.programcreek.com/python/example/93227/scipy.io.wavfile.read
0 Response to "Scipy Read Gray Image to 3 Channel"
Post a Comment