Radon Transform Continuous on Schwartz Space

  • Published:

Fractional Hankel wavelet transform on the Schwartz type space

Abstract

In this paper, we extend the fractional Hankel wavelet transformation to tempered distributions through the adjoint method. A suitable Schwartz type space is introduced and the continuity of this transform is proved in this space. Through this continuity, it is extended to its corresponding dual space of tempered distribution. The continuity and extension of the inverse of this transform is also proved. Some examples of distributions and application in differential equation are given. The solutions of the differential equation are plotted as graphs using matlab.

Access options

Buy single article

Instant access to the full article PDF.

39,95 €

Price includes VAT (Indonesia)

Fig. 1

References

  1. Altenburg, G.: Bessel-transformationen in räumen von grundfunktionen über dem intervall \(\omega \)=(0,\(\infty \)) und deren dualräumen. Mathematische Nachrichten 108(1), 197–218 (1982)

    Article  MathSciNet  Google Scholar

  2. Gerardi, F.: Application of mellin and hankel transforms to networks with time-varying parameters. IRE Transactions on Circuit Theory 6(2), 197–208 (1959)

    Article  Google Scholar

  3. Kerr, F.H.: Fractional powers of hankel transforms in the zemanian spaces. Journal of mathematical analysis and applications 166(1), 65–83 (1992)

    Article  MathSciNet  Google Scholar

  4. Moorthy, R.S.: On the space of periodic distributions with multi-dimensional wavelet packet transform. J. Anal. (2022). https://doi.org/10.1007/s41478-022-00473-3

    Article  Google Scholar

  5. Moorthy, R.S., Roopkumar, R.: Curvelet transform on tempered distributions. Asian-Eur. J. Math. 8(02), 1550031 (2015)

    Article  MathSciNet  Google Scholar

  6. Moorthy, R.S., Roopkumar, R.: Curvelet transform on rapidly decreasing functions. Proc. Jangjeon Math. Soc. 20(2), 153–161 (2017)

    MathSciNet  MATH  Google Scholar

  7. Moorthy, R.S., Rejini, M.T.: Bessel Wavelet Transform and Fractional Bessel Wavelet Transform on Functions of Rapid Descent. Int. J. Appl. Comput. Math. 8(3), 1–21 (2022). https://doi.org/10.1007/s40819-022-01336-y

    Article  MathSciNet  MATH  Google Scholar

  8. Pathak, R.S.: The wavelet transform of distributions. Tohoku Math. J. Second Ser. 56(3), 411–421 (2004)

    MathSciNet  MATH  Google Scholar

  9. Pathak, R.S.: Integral Transforms of Generalized Functions and Their Applications. Routledge, London (2017)

    Book  Google Scholar

  10. Prasad, A., Mahato, K.: The fractional hankel wavelet transformation. Asian-Eur. J. Math. 8(02), 1550030 (2015)

    Article  MathSciNet  Google Scholar

  11. Roopkumar, R.: Generalized radon transform. Rocky Mountain J. Math., 1375–1390 (2006)

  12. Roopkumar, R.: Extended ridgelet transform on distributions and boehmians. Asian-Eur. J. Math. 4(03), 507–521 (2011)

    Article  MathSciNet  Google Scholar

  13. Rudin, W.: Functional Analysis. McGraw-hill, New York (1973)

    MATH  Google Scholar

  14. Schwartz, L.: Théorie des Distributions. 1 (1950). Hermann, Paris (1950)

  15. Thanga Rejini, M., Subash Moorthy, R.: Wave packet transform and fractional wave packet transform of rapidly decreasing functions. International Journal of Wavelets, Multiresolution and Information Processing, 2050077 (2020)

  16. Torre, A.: Hankel-type integral transforms and their fractionalization: a note. Integral Transforms and Special Functions 19(4), 277–292 (2008)

    Article  MathSciNet  Google Scholar

  17. Zemanian, A.H.: Generalized integral transformations, vol. 18. Interscience Publishers, New York (1968)

    MATH  Google Scholar

Download references

Funding

This work is supported by the Scientific Engineering Research Board (SERB) under the core research grant scheme from the Department of Science and Technology, India (File No. CRG/2018/002491). The corresponding author is the recipient of this project.

Author information

Authors and Affiliations

Corresponding author

Correspondence to R. Subash Moorthy.

Ethics declarations

Conflict of interest

The corresponding confirms that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thanga Rejini, M., Subash Moorthy, R. Fractional Hankel wavelet transform on the Schwartz type space. J. Pseudo-Differ. Oper. Appl. 13, 48 (2022). https://doi.org/10.1007/s11868-022-00482-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI : https://doi.org/10.1007/s11868-022-00482-7

Keywords

  • Hankel translation and dilation
  • Fractional Hankel wavelet
  • Schwartz space
  • Tempered distributions

Mathematics Subject Classification

  • 44A15
  • 46F12
  • 42F12

mashburntheyinecaut.blogspot.com

Source: https://link.springer.com/article/10.1007/s11868-022-00482-7

0 Response to "Radon Transform Continuous on Schwartz Space"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel